
Managing Requirements Invalidity Risk

Andriy Miranskyya and Nazim H. Madhavjib
aDepartment of Applied Mathematics, bDepartment of Computer Science,

University of Western Ontario, London, ON, Canada
aamiransk@uwo.ca, bmadhavji@csd.uwo.ca

Abstract

The importance of dealing with various types of risk in
project management has long been recognised. In this posi-
tion paper, we argue for monitoring and managing the risk
associated with an application’s domain changes which, in
turn, may necessitate requirements modification or deletion
during the development stage. In other words, we are con-
cerned with how “valid” the requirements are through the
development stages. We call this requirements invalidity
risk. Based on the measure for calculating invalidity risk,
we discuss how this risk can be managed in a typical risk
management process.

1 Introduction and Position

It has long been known that the customer and end-user
satisfaction with a software system1 tends to diminish over
time unless the system is upgraded (or evolved) on a regu-
lar basis [7, 10, 12] to keep up with the changing needs of
the various stakeholders. The rate of satisfaction reduction
would depend, in part, on the application type and the do-
main in which it is used. One can even say that, in general,
the only software that does not change is dead software.

The phenomenon of stakeholder dissatisfaction with a
software system is not just of theoretical interest. Consider
the rather common situation today where an organisation
is using software systems (which are infrastructural assets
of sorts) to achieve its goals. These assets lose their net
worth if they are not upgraded regularly. From a taxation
point of view, this is quite well recognised to the extent that
software depreciation is typically allowed at the rate of ap-
proximately 40% per annum (or has a life of approximately
two and a half to three years) [1, 5].

This work is supported, in part, by NSERC, Canada.
1The ideas and concepts described in the paper apply, in general, to

both pure software and hybrid hardware-software systems.

So, the fact that non-evolving software has a shrinking
value over time (either in terms of stakeholder satisfaction
or economics), begs a question as to by how much the
“idea” of a software system, as denoted by its requirements,
at the start of the project (both in the case of new systems as
well as new releases), loses its worth by the time the system
is released for use. While there is no single or clear answer
to this question (because it depends on many factors, such
as, the type of software, market competition, the extent of
need by the customers, development cycle-time, and oth-
ers), the high rate of depreciation after the release of the
system is a good indicator that the software begins to lose
its value even during its development phase.

Reasons for such degradation include changes in the do-
main of application, such as assumptions (underlying the
requirements) which might have been valid at project start
but may not all be valid at project end, and likewise for
the requirements themselves. We call such degradation as
requirements invalidity. Requirements invalidity is a risk
because its extent is not known a priori.

From the arguments made, we take the position that it
is important that requirements degradation and the ensuing
invalidity risk, during a particular cycle of system develop-
ment, is monitored and managed appropriately. Being aloof
about this risk could lead to a rude awakening at the time of
the system’s release.

Of course, requirements invalidity risk is not the only
risk to be managed in a software project. There are other,
more well-known, direct and indirect project risks such
as developer motivation with the system, customer rela-
tionships, technical glitches, delays, staff movement, unex-
pected budgetary constraints, and others (see, for example,
[4]). Thus, requirements invalidity risk needs to be man-
aged along with these other risks. In this paper, we describe
some key issues to be considered when managing require-
ments invalidity risk in a typical risk management process.



2 Background

Below, we first describe some requirements risk factors,
followed by our approach to determining invalidity risk.

2.1 Requirements Risk Factors

In [13], Wiegers mentions the following risk factors as-
sociated particularly with software requirements:

• lack of clear product vision

• lack of agreement on product requirements

• unprioritised requirements

• new market with uncertain needs

• new applications with uncertain requirements

• rapidly changing requirements

• ineffective requirements change management process

• inadequate impact analysis of requirements changes

In order to address requirements invalidity risk, we focus
on two of the seven factors listed above: rapidly chang-
ing requirements (a product issue) and ineffective require-
ments change management process (a process issue). These
are dealt with in our invalidity risk model [8] which we
overview in the next section.

2.2 Invalidity risk model

There are four key aspects to our model:
1. Assumptions (A) and requirements (R) are explicitly

represented and there exist interactions between assump-
tions and requirements. Three general types of interaction
are A ↔ A, R ↔ R, A ↔ R, as described in [8, 9]2.

2. Let V(·)(j, t) be a binary variable, which is set to 1
when the j-th assumption (resp. requirement) in set (·) is
valid (resp. desirable) at time t and is 0 otherwise. The in-
teraction between assumptions and requirements is modeled
(through the development cycle) using a Boolean Network
(BN) framework [6]. This describes the connections be-
tween assumptions and requirements as well as the factors
which cause them to change state.

3. The requirements invalidity risk is modeled as a time
sequence of system states where a system state is defined by
the validity and desirability of the total set of assumptions
and requirements, respectively, at any given time. During
system development (and usage as well, of course), the op-
erational domain of the system may change. In turn, this

2Technical report [9] can be downloaded at http://publish.
uwo.ca/∼amiransk/tr645.pdf.

may lead to assumptions invalidity and requirements mod-
ification or removal. For this, we use Poisson processes to
model the events that constitute the probability of change
in volatility of A and R at various times in the development
process. In addition, we use stochastic processes to model
changes in the importance of requirements during the devel-
opment process. Finally, in order to model the validity of A
and desirability of R at the start of the development process,
we use a Bernoulli distribution.

4. The requirements invalidity risk is measured at var-
ious points in the development project, as a n-tuple, in
terms of specific metrics: Validity V (k, t) (as a probabilis-
tic value for the validity of a requirement or an assump-
tion), Importance I(k, t) (obtained from stakeholder in-
put), Children weight C(k, t) (based on dependency of a
requirement on other requirements and assumptions), and
Use-cases participation weight U(k, t) (ubiquity of a re-
quirement), for k-th set member at time t (see [9] for de-
tails). For a set of requirements we can obtain a single value
by summing up the values for each of the metrics for all the
requirements in the set. The management can then interpret
the risk measures in the context of the project at hand.

The modeling of the invalidity risk is performed using
the Monte Carlo approach — we simulate the dynamics of
BN from the initial time until the final time specified by
the user, by applying to it the processes and distribution de-
scribed above. Risk metrics are applied to the BN at the
final state to obtain the measure of invalidity risk associated
with A and R. The reader is referred to [8, 9] for more de-
tail on the core technical aspects of this work. Below, we
now discuss how these measures can be incorporated into
the risk management process.

3 Managing the Invalidity Risk

Risk management consists of a number of key generic
steps: identification, analysis, planning, tracking and con-
trolling; for examples see [13, 14]. An actual risk manage-
ment process is not generally a linear process through these
steps. Rather, it typically involves back-and-forth iterations
among these steps. Below, we describe the focus in each of
the steps of the process.

In the identification step, all risks associated with the
project are identified. For invalidity risk, our model de-
scribed above is operationalised and risks associated with
individual requirements (or sets) are identified. Those re-
quirements that are beyond a certain threshold for a given
metric (determined by management decisions) are identi-
fied for further analysis.

In the analysis step, the identified risks are assessed for
possibility of mitigation. For the risky requirements, the
specific metrics described earlier are analysed. For exam-
ple, for a requirement with high invalidity risk, the manage-

http://publish.uwo.ca/~amiransk/tr645.pdf�
http://publish.uwo.ca/~amiransk/tr645.pdf�


ment (possibly in conjunction with the appropriate stake-
holders) needs to decide whether to modify or remove the
requirement or leave it intact. In cases where system goals
are severely affected by requirements removal, alternative
(sets of) requirements may be considered that lead to the
same system goals. In many cases, project (product) goals
do change midstream; still, requirements at that time should
be aligned with the new goals and invalidity risk should be
assessed. Thought needs to be put on how to avoid the
impending risks. Similarly, the fate of the requirements
beyond the metric-specific thresholds needs to be decided
upon by management. This is not an automatic process be-
cause requirements risk needs to be considered in the con-
text of many development, business and customer related
parameters. This is clearly a knowledge-intensive task and
specific to the system being developed.

In the planning step, the mitigation actions are carried
out based on the analysis from the previous stages. Tasks
are prioritised and resources are allocated. From the point
of view of invalidity risk, the goal is to identify the optimal
set of requirements based on information analysis.

In the tracking step, we need to monitor the risk indica-
tors. As soon as new information about a requirement or an
assumption arrives, or on a periodic basis, the model is fed
in with the new inputs and re-run to obtain the most recent
invalidity risk measures.

Finally, in the controlling step, any deviations from the
risk mitigation plan are corrected. Based on the tracking
information, we may reconsider the decisions made at the
planning stage.

In summary, in practice, invalidity risk is handled in a
reactive way at best, often late in the development cycle.
Proactive management of invalidity risk is (a) not a norm
and (b) not formalised in any way. Requirements are, more
often than not, frozen so that implementation can be carried
out and system delivered. This clearly compromises the va-
lidity of the system at delivery time. This is why agile meth-
ods are quite appealing for they allow requirements changes
deep into the development cycle. But not all projects are, or
likely to be, carried out using agile methods. What we are
proposing is a way to deal with requirements changes in a
proactive way and a way for management to move forward
knowing explicitly the risks involved based on simulation
results. This is akin to installing fog-lamps on a motor car
to deal with foggy driving conditions – something analo-
gous we suffer in large and complex software projects. Let
us now look at applicability of the approach.

4 Applicability of the approach

There are at least two important points to note in con-
sidering the applicability of our model. One is technical in
terms of how the inputs to the model are obtained, the op-

erational process for the model and where the output goes.
The second is organisational, particularly in terms of man-
agement support.

4.1 Technical considerations

In order to run model simulation, each requirement and
the underlying assumption needs to be represented in the
model along with the associated properties such as proba-
bility of validity and importance through the development
stages, etc. These parameters may be obtained from stake-
holders or experts. The set of opinions obtained during a
stakeholder survey can be small, which makes it difficult
to determine the form of particular processes and the dis-
tribution to be used. In this case, Bayesian statistical tech-
niques for elicitation of experts beliefs may be used; see
[11, pp.158-161] for the list of references.

The data collection process seems to fit better the incre-
mental approach, since batch input of parameters for all
requirements and assumptions can be voluminous and te-
dious. Automatic input during elicitation would relieve this
stress and eliminate transcription errors.

Addition of a new requirement or assumption to an exist-
ing set does not significantly increase the load on the user.
However this insertion needs to be carried out carefully so
that relations between old and new requirements and as-
sumptions are correctly identified so as to obtain realistic
output. Note here that by introducing the risk modeller,
we need to pay particular attention to the correctness of the
input information because management will likely believe
the, otherwise, flawed output and base further projects de-
cisions on this. It some cases, this can lead to costly or
irreparable project damage.

In contrast to this, in traditional development, while not
as technologically driven (which has its own, well-known,
perils!), there is human-oriented flexibility to some degree
to recover in the downstream development processes from
inaccurate requirements and assumptions. Further work
clearly needs to be carried out on the project-specific bene-
fits and costs of adopting our approach in practice.

In any case, once the data is fed into the model, the sim-
ulation is performed automatically; the only parameter that
user has to specify is the desired level of accuracy for calcu-
lations. The results obtained can be saved as a table of met-
ric values for each requirement, which can be aggregated
based on user preferences.

This table can be exported to third party project and
risk management tools in order to consider them along with
other risk factors (e.g., development cost and implementa-
tion time) for added benefit. For example, the tool Easy
WinWin [3] (used for requirements negotiation) has a set of
values such as ”Business Importance” and ”Ease of Realiza-
tion” for each requirement. To incorporate invalidity risk,



the Easy WinWin can possibly be extended to incorporate
the invalidity n-tuple (metrics) as a column with four sub-
columns. This would then give the stakeholders an added
insight for requirements negotiation and into project man-
agement.

4.2 Organisational considerations

It would be naive to adopt the proposed modelling ap-
proach if there is no organisational awareness or support for
the management of requirements invalidity risk. It is quite
well-known from process assessments using the Software
Capability Maturity Model [2] that approximately 5% of
the organisations are classified at the ”Initial” level; approx-
imately 34% at the ”Managed” level; approximately 27%
at the “Defined” level; approximately 4% at the ”Quantita-
tively Managed” level; and approximately 21% at the ”Op-
timising” level.

The quantitative approach to software development and
project management are a hallmark of the “Quantitatively
Managed” and “Optimising” levels, suggesting that our ap-
proach would fit quite well with these advanced levels of
maturity. That said, organisations at the lower levels of
maturity (especially, “Managed” and “Defined”) are known
to gather metrics and improve processes in an attempt to
hoist themselves up to the higher levels. Also, there is con-
siderable focus on project management improvement at the
lower levels of maturity. This would suggest that the con-
cept and awareness of requirements invalidity risk and man-
agement issues can indeed be introduced as something to
look forward to in the future for such organisations.

5 Conclusion

In this position paper, we take the argue that it is impor-
tant that requirements degradation during a particular cycle
of system development is monitored and that their invalidity
risk during this cycle is managed appropriately. Being aloof
about this risk could lead to a rude awakening at the time of
the system’s release. We describe our approach to mod-
elling and simulating requirements invalidity risk and how
such risk can be dealt with in a typical risk management
process. We also describe the applicability of our approach
in practice.

6 Acknowledgements

We thank the anonymous reviewers for their helpful
comments, which have helped us to improve the paper.

References

[1] Taxation Laws Amendment (Software Depreciation) Bill. In
Bills Digest, number 117, Canberra, Australia, 1998-1999.
Parliament of Australia.

[2] Process Maturity Profile. CMMIr v1.1. SCAMPISM v1.1
Class A Appraisal Results. 2004 Year End Update. Software
Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, March 2005.

[3] B. Boehm, P. Grünbacher, and R. O. Briggs. Devel-
oping Groupware for Requirements Negotiation: Lessons
Learned. IEEE Software, 18(3):46–55, May-Jun 2001.

[4] M. J. Carr, S. L. Konda, I. Monarch, U. F. Carol, and W. F.
Clay. Taxonomy Based Risk Identification. Technical Re-
port (CMU/SEI-93-TR-6, Software Engineering Institute,
Carnegie Mellon, Pittsburgh, PA, 1993.

[5] IRS. Instructions for Form 4562. Depreciation and Amorti-
zation. Internal Revenue Service, Department of the Trea-
sury, USA, 2004.

[6] S. Kauffman. The Origins of Order. Self-Organization and
Selection in Evolution. Oxford University Press, Oxford,
1993.

[7] M. M. Lehman and J. F. Ramil. Rules and Tools for Software
Evolution Planning and Management. Ann. Softw. Eng.,
11(1):15–44, 2001.

[8] A. Miranskyy, N. H. Madhavji, M. Davison, and M. Reesor.
Modelling assumptions and Requirements in the Context of
Project Risk . To appear in RE’05: Proceedings of the 13th
International Requirements Engineering Conference, 2005.

[9] A. Miranskyy, N. H. Madhavji, M. Davison, and M. Reesor.
Modelling of Assumptions and Requirements Relations in
the Context of Project Risk. Technical Report 645, Depart-
ment of Computer Science, UWO, London, ON, Canada, 4
2005.

[10] V. Nanda and N. H. Madhavji. The Impact of Environmental
Evolution on Requirements Changes. In Proceedings of the
International Conference on Software Maintenance, pages
452–461, Montreal, October 2002.

[11] A. O’Hagan and J. Forster. Kendall’s Advanced Theory of
Statistics: Bayesian Inference, volume 2B. Arnold, London,
2nd edition, 2004.

[12] D. L. Parnas. Software aging. In ICSE ’94: Proceedings
of the 16th international conference on Software engineer-
ing, pages 279–287, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[13] K. Wiegers. Know your enemy: software risk management.
Softw. Dev., 6(10):38–42, 1998.

[14] R. C. Williams, G. J. Pandelios, and S. G. Behrens. Soft-
ware Risk Evaluation (SRE) Method Description (Version
2.0). Technical Report CMU/SEI-99-TR-029, Software En-
gineering Institute, Carnegie Mellon, Pittsburgh, PA, 1999.


