
A Case Study in Retrospective Analysis of Release Planning in an Agile Project

Lena Karlsson, Björn Regnell, Thomas Thelin

Abstract

This paper presents a case study evaluating a retrospec-
tive analysis method, aimed at improving the release plan-
ning activity in project management. The method is based
on a re-evaluation of candidate requirements for prior
releases in order to uncover release planning decisions
that would have been made differently today. The method
aims at using the lessons learned during the analysis to
find improvement possibilities for the release planning in
future projects. The release planning in the investigated
project turned out as successful in the retrospective analy-
sis. This may be due to the in-house project type, as the
users in an in-house project are few and tangible, and
have more similar requirements, compared to in a market-
driven project. It may also be due to the iterative approach
used during development as it provides possibilities of
continual re-prioritisation of requirements.

1 Introduction

This paper presents a case study where a retrospective
analysis method for the release planning activity was eval-
uated in an agile project. The method is called Post-release
Analysis of Requirements SElection Quality (PARSEQ)
and was first presented in [9]. The method aims at finding
improvement suggestions for the release planning activity,
as it is regarded as one of the most critical activities in mar-
ket-driven software development [4]. Decisions regarding
when, i.e. in which release, to include certain requirements
may affect the success of the product.

In [9], the method was applied at a company develop-
ing a software product for an open market. The company
had regular releases and used a requirements management
(RM) tool [15] when planning their releases. Several im-
provement suggestions for the release planning activity
was found in the case study, e.g. enhancing the overall pic-
ture of related requirements, increased attention to the elic-
itation of usability requirements and improved estimates of
implementation costs.

This time we wanted to try the method out using a dif-
ferent approach. The project investigated in this case study
had an agile development procedure, inspired by the Ex-
treme Programming (XP) [1]. The goal of the project was
to improve the IT support in the production system and was
conducted as an in-house project, i.e. both users and devel-
opers of the project was from the same company. Since the
project used an agile approach to development, they had
frequent iterations and regular releases when the system
was put into operation. For each iteration the project used
the Planning game [1] to prioritise the requirements and
plan the next release. The requirements were elicited in the
beginning of the project from internal stakeholders and
documented in an excel sheet.

The PARSEQ method is based on re-prioritising re-
quirements from prior releases in order to find possible im-
provements for future releases. In the previous case study,
the re-prioritisation was performed using the RM tool al-
ready available in the project. However, as the project de-
scribed here, as many others, used an agile approach to de-
velopment, we wanted to evaluate the application of the
PARSEQ method in an agile project. Therefore, the Plan-
ning game was used to re-prioritise the requirements from
prior releases. One main difference between the RM tool
and the Planning game is that the RM tool provides the user
with a priority list on a ratio scale, i.e. it is possible to see
how much more important one requirement is than another,

tinually and release plans were flexible enough to adapt to
the project scope. It may also be explained by the project
type; users of in-house projects have similar requirements,
and users and developers can co-operate during develop-
ment as they are located close by. These are the two main
issues that differ from the previous case, which investigated
a project with a less agile development approach in a mar-
ket-driven situation.

The paper is structured as follows. Section 2 describes
some related work. Section 3 presents the method PARSEQ
and its four steps. Section 4 provides background and de-
scription to the case under study. The results are discussed
in Section 5 and the paper is concluded in Section 6.

2 Related work

This section describes the background of the methods
used in this paper.

The agile methodologies have gained interest during the
last years as it provides a more flexible alternative to the tra-
ditional development approaches. The most well-known ap-
proach may be Extreme Programming (XP) [1]. XP in-
volves twelve practices such as Pair programming, Contin-
uous integration, Refactoring, and the Planning game. The
Planning game is a procedure used to determine the scope
of the next release by combining business priorities, e.g.
value to the user or customer, and technical estimates, e.g.
time and resource estimates.

The retrospective is recognised as an important means
for software process improvement [11]. The activity has
many different names - process review, post mortem,
project review, etc., but the idea is the same: by looking
back and learning from the past we may find improvements
for the future. The project retrospective is regarded as an ex-
cellent method for Knowledge Management [2]. One of the
first papers to present a defined process recommends a five
step approach that includes designing a project survey, col-
lecting objective project metrics, conducting a debriefing
meeting and a “project history day”, and finally publishing
the results [5].

Nolan [13] states that the most effective way to im-
prove is by learning from success. Rather than studying the
failed projects or looking for external answers, you may
choose to learn from the most successful projects. While
traditional approaches to process improvement often focus
strongly on improving through perpetual refinement, Nolan
suggests that learning from success is a more effective and
efficient scheme. He states: “If you believe that failure is no
accident, then you must also believe that success is no acci-
dent”.

The release planning activity involves decisions re-
garding when and how to include different requirements in
the product. It is considered as one of the most critical ac-

tivities in software development [4]. Mistakes made during
release planning may affect the success of the product. If a
certain requirement is released too late, users may be an-
noyed if an expected function is missing. On the other hand,
if a certain requirement is released too early, the foundation
for it may be missing or the users might not be ready for it.
The key is to use the available development resources in the
best way possible, and put the functionality in the most ap-
propriate release.

3 The PARSEQ Method

The basic idea of the PARSEQ method is the same as
for other retrospective analyses, although in this case the is-
sues regarding release planning and requirements prioritisa-
tion are selected for analysis and improvement. The goal of
the method is to evaluate and find improvements for the re-
lease planning activity. The method is based on re-evalua-
tion of a sample of requirements from prior releases. The re-
evaluation is based on criteria such as implementation cost
and user value and can be conducted using a requirements
prioritisation technique to determine the current relative or-
der among the requirements. During the time since the re-
leases were launched new knowledge has been gained
regarding the real implementation cost of requirements and
the user response to the requirements. This knowledge is
used to produce a post-release priority list with the relative
order between the requirements in the analysis. In the root
cause analysis, the release plan is compared to the post-re-
lease priority list in order to find requirements that are im-
plemented either too early or too late. These requirements
can point out how the organisation should have acted if
they, earlier, had all the knowledge they have now. Thereby,
it might be possible to improve the release planning process.
The four steps in the method are illustrated in Figure 1.

The four steps described in this section can each be per-
formed in different ways. In this case study we want to in-
vestigate how the PARSEQ method can be performed on a
more agile project than has been investigated before. This is
important since many projects do not store their require-
ments in a commercial RM tool, but rather use e.g. MS Ex-
celTM. Therefore, this case study investigates the PARSEQ
method using the Planning game for re-estimation of cost
and value in the second step. The Planning game is an agile
approach to requirements prioritisation and can be used
without any special tools. This section describes how the
method was applied in the case study.

3.1 Pre-requisites for the PARSEQ Method

There are a number of practices that need to be implemented
in order for the PARSEQ method to work properly:

• Multiple releases of the product and requirements
from earlier releases are saved in a repository.

• Data for each requirement stating which release it is
implemented in, or if the requirement has been post-
poned or excluded.

• Employees who have decision-making experience
from prior releases.

• A facilitator with experience of performing retrospec-
tive analyses.

The four steps in the PARSEQ method are described below.

3.2 Step 1: Requirements Sampling

The main input to the PARSEQ method is a require-
ments repository which comprises requirements that were
candidates for the investigated product. Some of those re-
quirements are implemented in one of the product releases
and some are postponed or excluded.

The sample should be large enough to be representative
for the product, but still small enough to be managed during
one session. Each of the selected requirements should be
mapped to the release it is implemented in – or if postponed,
this should be noted.

3.3 Step 2: Re-estimation of Cost and Value

The requirements sample is used as input to the second
step, where the cost and value of the requirements are re-

estimated. Since these estimates may be difficult to retrieve
in exact numbers, the second best approach is to re-priori-
tise the requirements and thereby get an ordered list of
requirements. This does only give information about the
relative order between the requirements, and not their value
and cost in specific numbers.

The Planning game [1] is a prioritisation technique of-
ten used in agile approaches. It is based on dividing require-
ments into three groups, categorised e.g. high, medium and
low. In order to get a complete priority order, the require-
ments are also ranked within the groups. To capture the
common trade-off between user value and implementation
cost, these are often used as criteria, although other criteria
can be used as well.

We categorised the three user value groups as follows:

1. Requirements that are absolutely essential

2. Requirements that are less essential but still adds to
the value

3. Requirements that are nice to have

Next the requirements are prioritised based on imple-
mentation cost. We categorised the three implementation
cost groups as follows:

1. Essentially more than medium cost

2. Medium cost

3. Essentially less than medium cost

Preferably, the value criterion should be re-estimated by
key users of the product or by marketing personnel who
have a good view of the customer wishes, and the imple-
mentation cost should be re-estimated by developers who
are involved in the product development.

When the requirements are grouped and ranked within
the groups, a tail-head comparison can be performed to en-
sure the correct order is obtained [8]. This is performed by
comparing the lowest ranked requirement in one group with
the highest ranked requirement in the next group. The com-
parison is continued until all requirements are in the correct
order.

The cost/value approach to release planning has been
shown useful to illustrate the trade-off decision makers of-
ten face [7]. In order to produce a foundation for the root
cause analysis, a cost/value diagram is constructed based on
the ranked requirements.

3.4 Step 3: Root Cause Analysis

The root cause analysis consists of a discussion about the
different fields in the cost/value diagram. Ideally, the re-
quirements to the upper left (area I in Figure 2) should be
implemented first, since they have a high-value and low-
cost combination. The requirements to the lower right (area
III in Figure 2) should be implemented last or not at all,

Fig. 1. An outline of the activities and products of the
PARSEQ method.

Requirements
sampling

Root cause
analysis Root

causes

Elicitation of
improvements Process

improvement
proposals

Sub-set
of reqs

Re-estimation of Post-
release
priority
list

Requirements
repository

cost and value

since they have a low-value and high-cost combination.
Therefore, the requirements in these areas are subject to in-
vestigation as we want to find the requirements that were
implemented either too early or too late.

Some questions can be used as guidance to find root
causes for different decisions:

• Why did we implement the requirement that early/
late?

• Based on what facts, did we make that decision?

• What has changed since the decision was made?

• Was it a correct or incorrect decision?

This results in a mapping between the root causes and the
requirements that are based on incorrect decisions.

3.5 Step 4: Elicitation of Improvements

The outcome of the root cause analysis is used to facilitate
the elicitation of improvements. The intention is to base the
discussion on strengths and weaknesses of the requirements
selection process and identify changes to current practices.
A number of questions can assist to keep focus on improve-
ment possibilities:

• How could we improve decision-making?

• What would be needed to make a better decision?

• Which changes to the current practices can be made to
improve requirements selection in the future?

The results can be used in a process improvement pro-
gramme aiming at enhancing the decision-making in future
releases.

4 PARSEQ Case Study

This section describes the case study in which the PARSEQ
method was evaluated in an agile setting. The case study in-
volves an in-house project using an agile development ap-

proach. The case study was performed as a part of a research
collaboration between the researchers and the participating
company. Below the case study background is described,
along with the results from the case study execution. The
section ends with the threats to validity.

4.1 Case Study Background

The organisation that participated in the study develops
embedded software products for a global market. The case
in focus is an in-house project aimed at improving the pro-
duction IT system, and its connection to the business system
and production database. The production IT system is divid-
ed in three main steps. First, items are provided with soft-
ware and tested, then items are labelled and placed in a suit-
able box, and finally items are bundled into multipacks that
should be shipped to a certain customer.

The project used an agile development method, inspired
by Extreme Programming [1], with frequent releases. Al-
though the project had never tried working in an agile man-
ner before, some co-workers had experience in agile meth-
odologies.

A repository of requirements was developed early on in
the project, by interviewing a large number of stakeholder
representatives and documenting their wishes for the new
system. One of the researchers was involved as assistant in
the elicitation of requirements for the system. The project
was divided into several releases of the product, and each
release was divided into several shorter iterations. In the be-
ginning of each iteration, a Planning game activity was per-
formed in order to determine which requirements to imple-
ment. The requirements repository was used as input to the
planning and prioritisation, although the requirements had
to be broken down to a more detailed level when planning
the iterations.

4.2 Results from Executing the Case Study

The case study was divided into two separate occa-
sions since the users were unable to attend the first session.
The Project manager and the System architect participated
during the first session, as they were involved throughout
the development of the system. The second session was at-
tended by the Production manager and the Production test
manager who are key users of the production system. They
also acted as customers of the project and suggested many
of the requirements in the repository.

One of the researchers acted as facilitator and took notes
during both occasions. The Requirements sampling step
took about one hour and was performed by the facilitator
before the first session. The sessions on site lasted for ap-
proximately two hours each.

Cost

Value

I

II

III

Fig. 2. Cost/value diagram example with the areas to
investigate

Step 1: Requirements sampling
The requirements repository consisted of about 120 re-

quirements arranged by the date it was entered. In order to
get a reasonable sample, every fourth requirement was se-
lected, i.e. the sample consisted of 30 requirements. Thus,
the sample included requirements suggested all through the
elicitation phase. The sample included both requirements
that were implemented during the project and requirements
that were postponed or excluded.

As we intended to use the Planning game as re-estima-
tion technique in step 2, the requirements were printed on
two sets of cards, one representing the user value and one
representing the implementation cost.

Step 2: Re-estimation of value and cost
The requirements sample was re-estimated based on

cost and value. The intention was to let the Project manager
and System architect estimate the implementation cost, as
they represent the developers of the system, and the Produc-
tion managers estimate the user value, as they represent the
users of the system. However, as the users were unable to at-
tend, the developers had to play both roles during the first
session.

The participants were instructed to start with the value
criterion, representing the value to the users. They were
asked to create three rather evenly large groups, i.e. none of
the groups should be almost empty. The three groups were
divided as shown in Table 1. The developers only priori-
tised 29 of 30 requirements, since they classified one re-
quirement as impossible to prioritize.

The participants were then asked to rank the cards with-
in each group, in order to get a list of prioritised cards. With-
out instructions, they used a sorting technique and took one
card and compared it to the others in the list to see where to
insert it. They spent a bit more time prioritising on the cost
criterion than on the value criterion, see Table 2. This may
indicate that the cost criterion was more difficult for them to
estimate than the user value.

In the second session, the users prioritised the require-
ments based on both value and cost for the purpose of com-

paring their priorities to the developers’. As can be suspect-
ed, the implementation cost was difficult for them to esti-
mate. The users found it easier than expected to prioritise
based on value, but as they did not have any clue about im-
plementation costs, they used their best guess. They spent
less time on the cost criterion than on the value criterion.
The users applied another approach when the three groups
had been formed, and divided each group into three new
groups until they had reached a complete ranking.

As the users worked rather fast, they were given a
chance to use tail-head comparison. The lowest ranked re-
quirements in the top value group was exchanged for the
highest ranked requirements in the next group before they
were satisfied. During prioritisation of implementation cost,
they did not change any of the requirements in the tail-head
comparison.

Analysis of agreement. The Kappa value (K) can be used
to assess the agreement between a set of raters who assign a
set of objects into a set of categories [14]. In this case, the
three fields (I, II, III) in Figure 2 were used as categories
into which objects, i.e. requirements, were assigned. The
two sets of raters were the users and the developers. The Ka-
ppa values are presented in Table 3.

Different suggestions have been presented regarding
the interpretation of the Kappa value. In [6], one suggestion
is that 0.21<K<0.40 can be regarded as a fair agreement,
which would be the case for the agreement between the us-
ers’ and the developers’ estimates of value. Kappa values
close to, or below, zero suggest no agreement, and therefore
there would be no agreement between the users’ and devel-
opers’ estimates of cost.

Cost/value approach. As the cost estimates made by the
users were too unreliable, we have chosen not to include
their cost/value diagram here. The value estimates made by
the developers turned out to be rather similar to the value es-
timates made by the users, as the Kappa value indicates.

Table 1. Number of requirements in each priority group

Value
groups

Devel-
opers

Users Cost
groups

Devel-
opers

Users

Reqs that are
absolutely
essential

16 15 Essentially
more than
medium

9 9

Reqs that
provides
added value

6 8 Medium 11 10

Reqs that are
nice to have

7 7 Essentially
less than
medium

9 11

Time (minutes) Developers Users

Value
 Divide into groups 15 13

Within groups 15 11

Cost
Divide into groups 20 7

Within groups 20 9

Table 2. Time spent on prioritisation

Table 3. Kappa value for a comparison between users’
and developers’ estimates of cost and value

Criteria Kappa value

Cost -0.08

Value 0.32

Figure 3 shows the cost/value diagram performed by the de-
velopers.

The facilitator drew a diagram on the whiteboard, with
the y-axis representing the ranked order of user value and
the x-axis representing the ranked order of implementation
cost. The value cards were used to place the requirements in
the correct order based on value, i.e. vertically on the cost/
value diagram. The cost cards were then used to place them
in the correct order based on implementation cost, i.e. hori-
zontally. The facilitator also drew lines representing the
three groups, resulting in nine sections (A-I) on the white-
board.

Step 3: Root cause analysis
The root cause analysis consisted of a discussion about

the different fields in the cost/value diagram. The project in-
cluded three main releases, which consisted of several iter-
ations. We agreed that sections A, B and D, ideally, ought
to contain requirements from the first release and sections F,
H and I requirements implemented in the third release or not
at all. So, we investigated the requirements in sections A, B
and D and discussed the requirements that were not imple-
mented in the first release.

In the cost/value diagram made by the developers,
eleven of the twelve requirements that appeared in sections
A, B or D were implemented in the system, although four
were not implemented in the first release. The discussion
showed that those requirements could not be implemented
in an earlier release as other requirements were needed as

foundation. They were not needed urgently, but they were
very important to include sometime. Therefore they could
be postponed to a later release when it was better suited to
implement them. Only one of the twelve requirements was
excluded. However, the developers stated that the basic
problem behind the requirement was solved in another way.

Sections F, H and I contained eight requirements of
which seven had not been implemented. One of the require-
ments had been implemented in the first release. It was a us-
ability requirement regarding the user interface. It was ex-
pected to have a higher user value during development than
it actually had when the system was put into operation.
Therefore, it was implemented although, with regard to to-
day’s knowledge, it should probably not have been included
in the system.

The root cause analysis performed in the second ses-
sion, i.e. with the users, was difficult to draw any conclu-
sions from. The cost/value diagram pointed out some
requirements to investigate, but since there were no devel-
opers around to answer questions about why, and if, re-
quirements were implemented in a certain release, it was
difficult to find any root causes. It was also difficult to trust
the indications from the cost/value diagram, since the users
knew their cost estimates were unreliable. Therefore it was
decided to only use the users’ estimates as comparison with
the developers’ estimates, which was presented earlier.

Step 4: Elicitation of improvements
The PARSEQ analysis indicated that the release plan-

ning in this project was successful. The developers conclud-
ed that one reason for the successful release planning was
the iterative development. During the project, the Planning
game was used to evaluate and prioritise the requirements
regularly, and the release plan was flexible enough to adapt
to changes in the requirement priorities and in the project re-
sources.

Thus, the most important insight was that regular prior-
itisation yields better release plans and this lesson will be
brought into other projects at the company. More prototyp-
ing activities during release planning was also mentioned as
a possible improvement in other projects. The participants
were pleased with the result, as it was a confirmation that
they had prioritised and decided correctly and that the iter-
ative development is a successful way of working.

Although the users’ root cause analysis did not bring
any particular conclusions, the users were surprised with the
extent of which they were actually given the most important
functionality. Since the scope of the project was cut down
during development due to lack of resources, the users were
worried that some important functionality had been exclud-
ed. The retrospective analysis showed that this was not the
case, which of course is encouraging for all stakeholders.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Cost

V
al

u
e

R6
R2

R5

R27

R17

R23
R4

R24

R20

R16

R18

R19

R1

R10

R15

R9

R11

R21

R22

R12

R30
R25

R3
R14

R7

R28

R29

R13

R26

A B
C

D E F

G H
I

Rel 1

Rel 2

Rel 3

E x c l u d e d

F i g . 3 .

4.3 Threats to Validity

The case study was the first time the PARSEQ method
was used with the Planning game as re-prioritisation tech-
nique. It was also the first time it was used on an in-house
project using an iterative development approach. The most
important threats to validity are described below.

Ideally, the cost/value diagram should be designed us-
ing developers’ cost estimates and users’ value estimates
and the retrospective session should be attended by both
roles. As the analysis was divided in two sessions in the case
study, it may have affected the results. The developers esti-
mates of value agreed rather well with the users estimates,
but if the users’ estimates had been available, a slightly dif-
ferent set of requirements would possibly have been pointed
out in the root cause analysis. If both users and developers
had been present it could also have brought a more interest-
ing discussion between the parties.

The sample was selected from a list of requirements ar-
ranged by date of arrival. Therefore, no consideration was
made to which release the requirements belong to. Only a
few were implemented in the second and third releases,
while many were implemented already in the first release.
Requirements more evenly distributed between the releases
could have yielded a more interesting analysis. Similarly,
the analysis could have been improved if not as many re-
quirements were postponed.

The requirements repository that was used as input to
the study contained high-level user requirements and there-
fore it was sometimes difficult for the participants to judge
whether or not a requirement had been implemented – some
were implemented partially and some were implemented
over a large period of time. Therefore, the mapping between
requirements and release number is approximated. It would
possibly have been easier to do the mapping if more detailed
requirements were used instead of user requirements. How-
ever, it is desired to get the users’ view of the system, which
may be difficult if analysing too detailed requirements.

Some issues regard the method rather than the case
studied here, and need further attention in future case stud-
ies. Several of the requirements in the analysis were subject
to interdependencies. Some requirements affected the sys-
tem architecture and had to be implemented before others.
This complicated the re-evaluation of value as well as cost.
The developers tended to give the more fundamental re-
quirements a higher priority, as they needed to be imple-
mented early on. Thus, the value to the users had to stand
back. This may be one explanation to the difference be-
tween users’ and developers estimates of value. Another ex-
planation could be that the cost of a specific requirement is
actually dependent on which release the requirements are

implemented. This dependency is difficult to evaluate for a
user of the system.

Requirements prioritisation is based on subjective
judgements, and may vary between different stakeholders.
Therefore, another set of participants could have produced
a different cost/value diagram and thereby pointed out dif-
ferent requirements to analyse. The threat was reduced by
letting two user representatives and two developer repre-
sentatives co-operate and negotiate on the priorities.

5 Discussion

In a prior case study the PARSEQ method was evaluat-
ed in a software developing company [9]. The retrospective
analysis focused on a commercial software product that is
sold on an open market. The findings included several im-
provements to the release planning process found during the
root cause analysis. The company discovered that they
needed to enhance both the overall picture of related re-
quirements and the division of large requirements into
smaller increments. They also found out that usability re-
quirements needed more attention in the elicitation phase.
The company also tended to estimate the market-value of
features in competing products too high, while effort esti-
mates were found to be both too high and too low. The par-
ticipants found the exercise interesting and instructive.

The results from the PARSEQ analysis in this case
study indicate that the release planning in the investigated
project have been successful. Two main reasons for the suc-
cessful release planning have been discussed. First of all, as
suggested by the developers, the iterative development and
continual re-prioritisation provided a flexible release plan
that could be revised and adapted to changes in the require-
ment priorities and in the project resources. Prototyping ac-
tivities was also mentioned to have improved release plan-
ning as user feedback could be taken into consideration.

A second possible reason is the type of project that was
investigated. In the previous case study, a market-driven
product was investigated in the retrospective, while in this
case study an in-house project was put under investigation.
The users in an in-house project are few and more tangible,
and have more similar requirements for the system. Users of
a commercial product can use the system in many different
ways, sometimes in ways unknown to the developer. The
users’ requirements are therefore more scattered and di-
verse for a market-driven product. This may be one of the
reasons for release planning appearing successful – the us-
ers’ needs were easier to find early on and the developers
understood the users’ opinions as they are all within the
same company.

One goal of this case study was to investigate the
PARSEQ method in an agile project, in comparison to the

previous case study. Since most projects do not have re-
quirements stored in a commercial tool, it is interesting to
investigate how a manual prioritisation technique works for
the second step of the PARSEQ method. According to the
participants it was easy to use the Planning game procedure
to rank the requirements. However, the Planning game only
presents the requirements on an ordered list, while the RM
tool, used in the previous case study, also presents the ratio
between requirements priorities. This difference may affect
the results so that another set of requirements is pointed out
in the cost/value diagram. This is because in this case the
cost/value diagram is based on ranks, while in the previous
case it is based on ratios, so some requirements might end
up in another root cause area (I, II, or III). However, it
seems as the Planning game may be sufficient for our pur-
pose.

6 Lessons learned and future work

This section discusses the lessons learned during the
case study and future research of PARSEQ. As was shown
in a previous case study, several improvement suggestions
were found for the market-driven project [9]. A conclusion
is that the PARSEQ method is probably more valuable to
market-driven projects as they may have a more problemat-
ic situation during release planning.

The main lessons learned from this case study are:

• It is necessary that developers and users attend the same
session in order to gain as much as possible from the
root cause analysis.

• Most of the requirements that were investigated in the
root cause analysis were actually not implemented in an
incorrect release. This since there were requirements
dependencies that forced some requirements to be
implemented before others. This is important in release
planning and it is discovered in the retrospective analy-
sis. Thus, not all requirements pointed out in the cost/
value diagram are based on incorrect decisions.

• Prototyping and iterative development work well in
software development. These are examples of learning
from success as described in the introduction [13]. Evi-
dently, the release planning had been a success in the
described case, and the company can learn from that.
The participants concluded that prototyping is a good
way to validate the requirements, and that the iterative
development approach provided the developers with the
most acute requirements for each iteration.

Future research includes three main things:

• Investigate possible tool support for the PARSEQ
method as it could speed up the method and leave more

room for discussions. It could provide us with different
possibilities to perform the different steps in the method
and guide the facilitator during the process.

• As it has been shown that the Planning game is just as
accurate at ranking requirements as the techniques based
on pair-wise comparisons [10], it would be interesting to
investigate the difference between techniques using an
ordinal scale and techniques using a ratio scale. We
could investigate if the PARSEQ method needs the ratio
scale, or if ordinal scale is sufficient. We also need to
evaluate how the areas in the cost/value diagram should
be selected in order to point out the most interesting
requirements to investigate.

• There may be other criteria than cost and value that
determines how the releases should be planned, as many
different criteria affect the priority in practice. Some
other criteria are described in [12], e.g. effort, resources,
and logical implementation order, which could be used
instead of cost. Further, importance to key customers,
importance to users, product strategy, and company
profit could be used instead of value. This may be inves-
tigated further as the most appropriate criteria may vary
depending on situation, product or company investi-
gated.

• It would be interesting to investigate another case where
iterative development was used in order to see if the
conclusion drawn here can be corroborated, i.e. that iter-
ative development with frequent iterations can lead to
more successful release planning.

Acknowledgements:

The authors would like to thank the four participants in
the case study, who have contributed with their time and ex-
perience and participated in valuable discussions regarding
requirements engineering, release planning, and possibili-
ties for the PARSEQ method.

References

[1] Beck, K., Extreme Programming Explained, Addison-Wes-
ley, 1999.

[2] Birk, A., Dingsøyr, T., Stålhane, T., “Postmortem: Never
Leave a Project Without It”, IEEE Software, pp. 43-45, May/
June, 2002.

[3] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt
och Dag, J., “An Industrial Survey of Requirements Depend-
encies in Software Product Release Planning”, 5th Int. Symp.
on Requirements Engineering, pp. 84-91, Toronto, Canada,
2001.

[4] Carlshamre, P., “Release Planning in Market-Driven Soft-
ware Product Development: Provoking an Understanding“,
Requirements Engineering, Vol. 7, pp. 139-151, 2002.

[5] Collier, B., DeMarco, T., Feary, P., “A Defined Process for
Project Postmortem Review”, IEEE Software, pp. 65-72,
July, 1996.

[6] El Emam, K., “Benchmarking Kappa: Interrater Agreement
in Software Process Assessments”, Empirical Software
Engineering, Vol 4, pp. 113-133, 1999.

[7] Karlsson, J., Ryan, K., “A Cost-Value Approach for Priori-
tizing Requirements”, IEEE Software, pp. 67-74, Sept/Oct
1997.

[8] Karlsson, J., Wohlin, C., Regnell, B., “An Evaluation of
Methods for Prioritizing Software Requirements”, Informa-
tion and Software Technology, Vol. 39, pp. 939-947, 1998.

[9] Karlsson, L., Regnell, B., Karlsson, J., Olsson, S., “Post-
Release Analysis of Requirements Selection Quality - An
Industrial Case Study”, 9th Int. Workshop on Requirements
Engineering: Foundation for Software Quality, Velden, Aus-
tria, 2003.

[10] Karlsson, L. Berander, P., Regnell, B., Wohlin, C., “Require-
ments Prioritisation: An Experiment on Exhaustive Pair-
Wise Comparisons versus Planning Game Partitioning”,
Proceedings of the 8th Int Conference on Empirical Assess-
ment in Software Engineering (EASE’04), Edinburgh, Scot-
land, UK, 2004.

[11] Kerth, N.L., Project Retrospectives: A Handbook for Team
Reviews, Dorset House Publishing, 2001.

[12] Lehtola, L., Kauppinen, M., Kujala, S., “Requirements Pri-
oritisation Challenges in Practice”, Proceedings of the 5th
Int. Conference on Product Focused Software Process
Improvement, pp. 497-508, Japan, 2004.

[13] Nolan, A.J., “Learning from Success”, IEEE Software, pp.
97-105, Jan/Feb, 1999.

[14] Siegel, S., Castellan, J.N., Nonparametric Statistics for the
Behavioral Sciences, Second Edition, McGraw-Hill, 2000.

[15] http://www.focalpointus.com (visited June 2005)

